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Abstract

Analytical expressions are obtained for the stress field in a sphere that has grown by accretion while rotating about
an axis at a speed which may vary during the accretion process. It is assumed that accretion occurs by the adherence of
infinitesimal particles that are stress free at the instant of attachment and that the material of the sphere behaves elas-
tically once it has accreted. The resulting stress field differs significantly from that predicted in a sphere that was ‘man-
ufactured’ in a stress free state and then set to rotate. The implications of these differences are discussed in the context of
the mechanisms for failure in accreted planetary bodies.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

The stress fields in planetary bodies influence many pertinent problems in planetary science such as tidal
disruption (Dobrovolskis, 1990), impact scenarios (Asphaug et al., 2002), and equilibrium shape configu-
rations for rubble piles (Washabaugh and Scheeres, 2002). The earliest solution of a problem of this class
involving a solid was due to Chree (1895), who determined the stress field in an elastic self-gravitating ellip-
soid spinning about a primary axis.

Chree’s solution defines the stresses that would occur in a body that was somehow ‘manufactured’ in a
stress free state, after which it is loaded by gravitational forces and caused to rotate. In practice, planetary
objects such as comets and asteroids typically grow by accretion (Weidenschilling, 2000) and forces due to
gravitation and rotation are present throughout the accretion process. There is every reason to believe that
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this will influence the final stress state in the body and that elastic removal of these forces would leave the
body in a state of residual stress (Holsapple, 2001).

Brown and Goodman (1963) found the analytic solution for the stress field in an elastic self-gravitating
spherical shell of inner radius r; and outer radius r, that had grown by accretion (they did not consider
rotation). The corresponding solution for a solid sphere can be obtained by setting r; = 0. The resulting
stresses are everywhere hydrostatic and there is a non-zero residual stress, in contrast to Chree’s solution.
In the present paper, we shall extend Brown and Goodman’s results to allow for the effects of rotation,
including the case where the rotational speed of the body changes in a fairly general fashion during the
accretion process. The results show significant differences from those of Chree (1895). They therefore also
imply that if the fully accreted sphere were then to be brought to rest (and hence unloaded), it would be left
in a state of residual stress.

2. Effect of accretion on the stress field

We consider a spherical planetary object that grows by accretion from zero up to a maximum radius «,
while rotating at speed Q, which may vary during the accretion process. We assume that the accreting par-
ticles are much smaller than the growing sphere so that the latter can at all times be treated as a continuum
and the instantaneous radius of the sphere treated as a continuous, monotonically increasing function s(z)
of time ¢. Because of this assumption, the results obtained are only valid for planetary bodies such as aster-
oids and comets that were grown by the accumulation of much smaller particles (Weidenschilling, 2000);
they cannot be used for the analysis of the major planets, since these were formed by the accumulation
of a relatively small number of planetesimals.

We assume that the material of the sphere behaves elastically once it has accreted. In other words, the
deformation of a particle at radius R will be elastic for 7> t(R), where 7(R) defines the time' at which
the radius of the sphere has just reached R. The equations of elasticity have no meaning for ¢ < t(R), since
in this time range there is no material at radius R.

It follows that the change in the stress field between times #; and 7, (¢, > #; > 7(R)) must satisfy the elastic
compatibility equations and in particular that the time derivative of the stress field ¢ satisfies these equa-
tions at radius R. If we now integrate ¢ with respect to time ¢, we conclude that the most general stress field
in an accreting elastic body can be written in the form

¢ = o+ a*(0), (1)

where ¢(7) is a time-varying, elastic (compatible) stress field and 6° represents an arbitrary function of inte-
gration (in this case an arbitrary function of radius R, but not a function of t). The decomposition of ¢ into
compatible and time-independent components is not unique, but one such decomposition would be to
define 6° as the residual stress that would remain after complete accretion if the forces due to gravitation,
rotation and any boundary tractions were removed.

2.1. Accretion boundary conditions
The solution due to Chree (1895) is based on the assumption that there is no residual stress (6° = 0), in
which case the conventional traction-free boundary condition at R = « is sufficient to determine ¢°. In the

case of accretion, additional boundary conditions are needed to determine ¢ and these must be based on
the nature of the accretion process.

! Notice that t is the function inverse to s—i.e. s{t(R)} = R.
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If the sphere were to grow by the instantaneous addition of a thin spherical shell of inside radius s, it
would be at least conceivable that this shell could come into being in a state of ‘membrane’ stress.> How-
ever, the actual accretion process involves the successive adherence of many small particles to the solid
sphere and except for the actual area of contact, the surface of these particles is traction-free at the instant
of adherence. We conclude that the surface of the accreting sphere is not merely traction-free, but
completely stress-free. In other words, all six stress components must be zero at R = s(¢). This provides suf-
ficient conditions to determine the complete stress field 6. Notice that this situation is analogous to that
occurring in the solidification of castings, where it is assumed that no instantaneous change in stress state
occurs as a particle changes from the liquid (and hence hydrostatic) state to the solid state (Richmond and
Tien, 1971).

3. Stress field due to rotation alone

The problem as stated is linear and hence the resulting stresses are the sum of those due to gravitational
forces and rotational inertia forces respectively, considered in isolation. The stress field in an accreted
sphere due to pure gravitational loading has already been given by Brown and Goodman (1963), so in this
section we consider the problem in which the only loading is the inertia force field fdue to rotation at speed
Q, given by

fr=p2r; fo=f=0 (2)
in cylindrical polar coordinates r, 0, z. This is conveniently defined in the form
f=-VVv, (3)
where the body force potential
1
V=— 3 pr* (4)

or in spherical polar coordinates R, 0, f§
1 .
V=— ipRzstmzﬁ. (5)

The rotational speed might change during the accretion process and hence is a function of z. Time enters
the problem only as a parameter as long as the angular acceleration is not sufficiently large as to cause sig-
nificant additional inertia forces. However, any time-dependence of Q will also imply a dependence on the
instantaneous radius s(¢) and this will influence the final stress field through the stress-free accretion bound-
ary condition.

In view of the possible time-dependence of the loading, the body force must be accounted for in the solu-
tion for the time-varying term ¢“(¢). It then follows that the residual stress term ¢” must satisfy the equilib-
rium equations in the absence of body force.

3.1. The time-varying stress field ¢“('t)

A sufficiently general solution for ¢°(¢) can be written in terms of Green and Zerna’s solution 4 and B
and a body force potential in the form

2 This occurs if, for example, a long thin plate is tightly wound around a drum (Yagoda, 1980; Debesis and Burns, 2003).
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. W0k oo dw )
Thr = 1 +6R2+Rcosﬁ—— (1- )6R cosﬁ+—aﬁ sin B (6)

2
v 193¢  cotfd¢ Cosﬁaw+(1—2v)6—008ﬁ+—

0=T_,"RoR R Of ' Rsinf Op R op Snp @
W 13 1 8¢ cospdw dw 2(1—v) 0w .
Tpp =T +§6—R+P£+ R of +(1—2v)a—Rcos[3+ R @smﬁ (8)
1 ¢ 1034 o*w o 2(1 —v) dw
¢ =P L (1=2v)— - —
% =xapr mop O Papor T g - — g gp o8k ©)
Tor = g5 = 0, (10)
where @ and ¢ are two time-dependent potential functions satisfying
Vo =0 (11)
1-2 1-2
vip =L PU=2) g ocinp, (12)

(I—-v) 2(1 —v)
from Barber (2002), Table 19.2 and Section 18.5.1.
It is easily verified that the particular solution

PR*Q*(5)(1 — 2v)(5cos2f — 3) (13)
280(1 — v)

satisfies (12) and hence the general solution of this equation can be written as the sum of ¢p and an arbi-

trary harmonic function ¢y. The harmonic functions w, ¢y can be written in terms of spherical harmonics

with time-dependent coefficients. They must be chosen to enable homogeneous boundary conditions to be

satisfied at R = s and hence we can be guided in the choice of appropriate spherical harmonics by the terms
contributed by ¢p and V in Egs. (6)—(10). We write

¢ =¢p+ Pu
_ pR'Q(s)(1 — 2v)(5cos 2 — 3) +A|R2(3 cos2f + 1) +A2R4(35 cos4f +20cos2f +9)
- 280(1 — ) 4 64

bp =

(14)

B>R*(5cos 38 + 3 cos ) (15)
8 )

where A, 4>, By, B, will generally depend parametrically upon time ¢ and hence also on the instantaneous
radius s of the partially accreted sphere.
Substituting (14), (15) and (5) into (6)—(10) we obtain the corresponding stress field as

® = BiRcos f +

o A B 3(94; + 4vB,y)R? B pQ*(s)(18 — v)R?
Cm= g AT 16 140(1 — v)
34, 3(54; + 2Bv)R? pQ*(s)(6 — 5v)R?
15 Bi(1—2v) + ) + 28(1=) cos2f
LIS
16 (74 + 4B,v)R? cos 48 (16)
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3[34, + 2B,(1 R pQ*(s)(11 + 13v)R?
638:7/1_231%[ 2+ 2B (1 +v)|R™ pQ7(s)(11 4 13v)

4 140(1 — v)
3[54; + 2By (1 +3v)]  pQ%(s)(1 +5v)) .,
{ 7 281 —v) R°cos2p (17)
oA g N 3(34; —4By)R* pQ(s)(6 + 23v)R’
%= T 16 140(1 — v)
34; — 2B, (1 —2v) +3B,(2 + v)R*  vpQ*(s)R? 15 5
[ 5 20— cos2f 6 (742 4+ 4B,v)R” cos 4f (18)
. [34 3[54; + 4B5(1 +V)|R*  3pQ*(s)(1 — 2v)R?Y .
Ohr = { 2 Bi(1—2v)+ g 28(1 =) sin 23
1
- % (74, + 4B,v)R* sin4p (19)
Ogp = af)ﬁ =0. (20)

Egs. (16)—(20) define a sufficiently general description of the time-varying compatible stress field 6°(¢).

3.2. The residual stress field

The residual stress ¢° is not required to satisfy the equations of compatibility, but it is independent of
time and must satisfy the equilibrium equations

aO'RR 1 66,,»R O8R COtﬁ (2O-RR — Opp —O'[;ﬁ)

— = 21
R Rop T R R 0 (21)
aO'R9 1 60/}9 1 60'99 30R9 20’/;9 COtﬁ

_ = L 22
R "ROp TRsnp 0 TR T R 0 (22)
60R,; l 60',;/; 3O'Rﬁ (Gﬁﬁ — 699) COtﬂ —0. (23)
R "R OB R R

(Saada, 1974, Section 7.12). The second equilibrium equation (22) is identically satisfied in view of the axi-

symmetry of the problem.
By analogy with Eqs. (16)~(20), a suitable general form? is

Orr = &1(R) + &5(R) cos 28 (24)
0 = &3(R) + g4(R) cos 28 (25)
05y = &s(R) + g6(R) cos 28 (26)

3 At first sight, it seems that we also would need terms varying with cos(4 ), sin(4p) as in Eqs. (16)—(20), but these terms are
eliminated by the stress-free boundary conditions and are therefore omitted here in the interests of brevity.
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0% = &:(R) sin 26 (27)
Oor = 095 = 0, (28)
where gy, ...,g7 are arbitrary functions of R.

Substituting (24)—(28) into the equilibrium equations (21) and (23) and equating coefficients of the Fou-
rier terms in f yields the four ordinary differential equations

Rgy(R) + 285(R) — g4(R) — g6(R) + 3g;(R) =0 (29)
Rg\(R) +2g1(R) — &5(R) — g5(R) + g,(R) = 0 (30)
Rgj(R) — 285(R) — g4(R) + 2g5(R) — g6(R) + 3g;(R) =0 (31)
—Rg5(R) — 84(R) + 3g4(R) — 3¢;(R) =0 (32)

and these can be used to eliminate g3, g4, g5, g¢ in Eqs. (24)—(28). Thus, the most general stress field of the
form (24)—(28) that satisfies the equilibrium equations can be written in terms of three unknown functions
of R as

Trr = &1(R) + g2(R) cos 28 (33)
o = &1 (R) — % (82(R) — g,(R) — Rg\(R)) — § (2(R) — g4(R))

168 + (R) + RGEH(R) - & (R)] cos28 (4
Sy = &1(R) + 3 (22(R) + &5(R) + Rei (R)) + 7 (5(R) ~ &(R))

43 [22:(R) + 62:(R) + RIg4(R) + & (R))] cos 2§ (35)
Ghp = &7(R) sin 2 (36)
Tor = g = 0. (37)

The full stress field is then obtained by combining the corresponding stress components from Egs. (16)-
(20) and (33)—(37).

3.3. Stress free boundary conditions
All six stress components must be zero at the instantaneous boundary of the sphere R = s(¢) for all values
of f. Setting the coefficients of the Fourier terms cos4f, cos2f etc. to zero in each of the resulting equations
yields
15(74; + 4B,v)s* = 0 (38)
T(1 —v)[64;, — 4B, (1 — 2v) 4 3(54; + 2B,v)s*] + (6 — 5v)p@*(s)s*> 4 28(1 — v)g,(s) = 0 (39)

35(1 — v)[8(4; — 2B,) + 3(94, + 4B,v)s*] — 4(18 — v)pQ*(s)s*> + 560(1 — v)g,(s) = 0 (40)
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{21(1 = v)[542 +2B2(1 4 3v)] = (1 + 5v)p@ (5) }s* = 7(1 = v) [6(g5(s) + g7(s5)) + (385 (s) — &5(s))] =0

(41)
35(1 — v){4(4; + 2B,v) + 3[34 + 2B5(1 + v)]s*} + (11 + 13v)pQ*(s)s”
= 35(1 = v)[2(281(5) — £a2(s) + &7(s)) +5(28,(s) — g3 (s) +g5(5))] =0 (42)
15(74, + 4Byv)s* = 0 (43)
2(1 = v)[34; + 3B3(2 + v)s* — 2B, (1 — 2v)] — vpQ*(s)s*
= (1= v)[2g2(s) + 6g5(s) + s(g3(s) + g5(5))] =0 (44)
35(1 — v)[8(4; — 2B)) + 3(34; — 4B,v)s*] — 4(6 + 23v) pQ*(s)s
+140(1 — v) [2(28,(s) + g2(s) + g7(5)) + 5(28 (5) + g5(s) — &5(s))] =0 (45)
15(74, + 4Byv)s* = 0 (46)
7(1 = v){4[34;, — 2B1(1 — 2v)] + 3[54; + 4B5(1 + v)]s*} + 6(1 — 2v)p@*(s)s* — 56(1 — v)g;(s) = 0
(47)

where we recall that 4,, 4, B;, B> and Q are also functions of s.

Only seven of the simultaneous ODEs (38)—(47) are linearly independent and they can be solved for the
seven functions 41, 4>, By, B>, g1, £>, 7. The solution contains three arbitrary constants of integration, but
these prove to have no effect on the final stress field which is obtained as

_ 14 s a , X i i
ORrr = 1007+ 50)(1 —v) [(17—24\) —25v )/R Q(s)sds + (9 + Tv)Q(a)(a” — R )}
14 “ , , )
_m[(l—l—v)/R O (s)sds + (3 + 20)@(a)(@ — R )} cos2p )
p

=) [2(11 —12v — 15y )/R Q(s)sds 4+ 2(12 + v — 5v°)Q(a)(a” — R?)

70 =70(7 + 5v

(11 = 12 — 157)R (@ (a) — Qz(R))] _pU+ VR (92((;1{:5?) (R)) cos(2) (49)
opp = 07T 5’1)(1 — [(17 24y — 25V?) / Q*(s)sds +2(3 — 6v — 5V?)R*(Q*(a) — Q*(R))

+(9 + 7v)2*(a)(a* — R* ] pc708+25[j [ 2(s)sds + (3 +2v)Q*(a)(a* — R?) (50)
opn = % [(1 ) /R Q(s)sds + (3 + 20)P(a) (@ — RZ)} (51)

Ogr = Ogp = 0. (52)
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These equations define the state of stress in a sphere that has grown by accretion while rotating about its
own axis. The effect of self-gravitation can be included by superposing the stress components

2np?G(a* — R?
GRRZ(TM:JW:—%; O—[i’R:OPR:O—G[S:Ov (53)

from Brown and Goodman (1963), where G is the universal gravitational constant.*

4. Failure mechanisms in accreted planetary bodies

Dones and Tremaine (1993) discuss the problem in which a cluster of particles orbiting a massive central
body accretes into a single orbiting body. In particular, they conclude that if the statistical dispersion of the
accreting particles is sufficiently small and/or the attraction to the central body is relatively weak, the rota-
tional speed @2 will remain approximately constant during accretion. At the other extreme, if gravitational
attraction is strong and dispersion is large, the rotational speed increases during accretion with the square
of the instantaneous radius—i.e. Q(s) ~ s°.

4.1. Constant rotational speed

If the rotational speed remains constant during accretion, Egs. (48)—(52) reduce to the simple form

1 2
or = 3P (@ — R*)(1 — cos 2) — 7“ p*G(d* — R?) (54)
| P 25 s 2
UHGZEPQ (a —R)—Tp G(a —R) (55)
1 2, 2 2 ZTE 2 2 2
(r,;,;:ZpQ (a —R)(l+cos2ﬁ)—?p G(a” — RY) (56)
G/;R = %pQZ(QZ — Rz) sin 2‘3 (57)
G(‘)R = 0-9[3 = 0. (58)

where we have included the self-gravitational stresses from Eq. (53).

Notice that both the gravitational and rotational terms in these equations vary with (¢* — R?) and are
independent of Poisson’s ratio v. In fact, the three principal stresses prove to be independent of polar angle
f, being

1 2n 2n
01 =07 = <2PQZ — 3PZG> (az - R2)§ 03 = _?sz(az - RZ)’ (59)

where o1, 0, act in the equatorial plane, while g3 acts in the polar direction. The principal stresses will be
everywhere compressive if

Q4
A=——< == Ap. 60
npG 3 (60)
4 Alternatively, we can write ogr = ggp = opp=— pg(@® — R*)[2a, where g is the value of the gravitational acceleration at the surface

of the accreted sphere.
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For A > Ap, a1, 0, become tensile, while g3 remains compressive. Notice however that the component of
local gravitational acceleration normal to the instantaneous surface of the sphere (modified by rotation) is

g= (g - Asin2ﬁ> npGs (61)

and hence A > Ap corresponds to a condition in which a particle placed near the equator would be thrown
off into space. Accretion under these conditions could occur only if impacting particles were to become
adhered to the surface as a result of the impact process with some non-zero value of cohesive strength.
The value of g at the poles remains positive for all A, suggesting that the assumption of uniform accretion
for all f is unrealistic for large A.

Table 1 lists estimated values of A for a range of planetary objects (Cox, 2000; Hilton, 2002; Mitchell
et al., 1996; Pravec et al., 2000; IAU, 2003). For the major planets, the inequality (60) is clearly satisfied,
as it is for most known asteroids. Some exceptions are listed in the fourth group of Table 1, but these are
believed to be primarily monolithic fragments of larger bodies resulting from collisions (Pravec et al., 2000).
The asteroids in the second group (Ceres, Pallas and Vesta) are closest to meeting the conditions assumed in
this analysis, in that they are approximately spherical and are believed to have resulted from accretion of a
large number of smaller particles (Weidenschilling, 2000). It is also believed that their present spin rate is
close to that during the accretion process (Davis et al., 1988).

The data given in Table 1 show that tensile stresses are unlikely to arise in many planetary objects be-
cause of the dominance of the compressive stresses due to self-gravitation. However, the stresses due to
gravitation are everywhere hydrostatic (see Eq. (53)) and hence cannot cause failure associated with shear
deformation and governed (for example) by the Mises, Tresca or Mohr—Coulomb failure critera. The Mises
stress (equivalent uniaxial tensile stress)

o = \/UI%R + GGy + Ghy — OrrO00 — TooGpp — OppOrr + 307 + 307, + 307,

1 2/ 2 2 (62)
=5pQ (a —R )v
2
Table 1
The dimensionless ratio A for some planets (group 1) and asteroids (groups 2-4)
Group Object Semi-axis ratios Density, (p) kg/m> Rotational speed, (Q) rad/s A, Q/(npG)
alb b/c
1 Earth 1.000 1.003 5515 7.30x107° 0.00461
Mars 1.000 1.009 3940 7.09x 1072 0.00609
Jupiter 1.000 1.063 1330 1.76 x 1074 0.111
2 1 Ceres 1.00 1.06 2060 £ 50 1.92x 1074 0.0834-0.0875
2 Pallas 1.10 1.05 2900 + 300 223x107* 0.0742-0.0914
4 Vesta 1.07 1.20 3500 + 200 3.27x107* 0.138-0.155
3 16 Psyche 1.29 1.31 1800 + 600 416x107* 0.347-0.688
45 Eugenia 1.36 1.45 1200 + 600, —300 3.06x 1074 0.248-0.497
87 Sylvia 1.42 1.26 1600 + 300 3.37x 107 0.285-0.417
4 1998 WB, * * * 5.58x 1073 36.9-149
1999 TY, * * * 1.44x 1072 247-987
2000 WL * * * 1.09x 1072 142-567

Notice that data in group 1 is included only for the purpose of providing some perspective for the numerical values of the spin
parameter A = Q*/pG, since the accretion assumption of the present analysis does not accurately represent the growth process of the
major planets. The parameters a, b, and ¢ are the semi-axes of an approximating ellipsoid such that a > » > ¢. No reliable information
is available for the parameters marked *. The range of values of A quoted for these objects was based on the assumption of a density in
the range 1000 < p < 4000 kg/m°>.
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while the maximum shear stress is

22 p2
Tonx :M. (63)

Both these expressions reach a maximum value at the center of the sphere. However, the Mohr—
Coulomb criterion, which is arguably the most appropriate for an accreted body, depends on the maximum
value of the ratio of the shear stress to the compressive normal stress on a given plane. This ratio is found to

be
T 8 /8 ~i2
— = |—(—==2 64
(—O') max |:3A (3/1 >:| ( )
and it is independent of R, 5. In other words, all points in the sphere are in the same condition relative to
the Mohr—Coulomb failure criterion. Equating this expression to a critical coefficient of friction f for slip to

occur on an internal plane, we find that all points in the accreting sphere will remain within the failure enve-
lope as long as

8 sin ¢
A<3<1+sin¢>> = Au-c, (65)

where ¢ = arctan(f) is the angle of friction. The Mohr—Coulomb falure parameter Ay, ¢ increases mono-
tonically with the coefficient of friction from Ay_c =0 at f=0 to the limit Ay_c — Ap as f — oo.

4.2. Comparison with Chree’s solution

Chree’s solution for the stress field due to rotation and self-gravitation, based on the assumption of zero
residual stress, is’

pR (@ = R)[9+7v =53 +2v)(1 —v)cos2f]  2mp*G(3 —v)(a* — R’

Ore = 1007+ 5v)(1 =) 1501 —v) (66)
_p@2(124 v — 5v)a® — (13 + 14y + 5v*)R* — 5(1 — v*)R? cos 23]
70 = 10(7 + 5v)(1 —v)
2np>G[(3 — v)a® — (1 + 3v)R?]
a 15(1 —v) (67)
~ p[5(3+2v)(1 —v)(a® — R*)cos 2B+ (9 + Tv)a® — (3 + 19v + 10v*)R?]
o= 10(7 + 5v)(1 — v)
2np>G[(3 — v)a® — (1 + 3v)R?]
a 15(1 —v) (68)
(34 2v)pQ%(a® — R?)sin 2
R = 2(7+5v) (69)
Ogr = Opp = 0. (70)

5> One way to obtain the rotational terms in these equations is to set Q(s) = 0 for 0 <5 <a and Q(a) = Q in Eqs. (54)(58). In other
words, to consider the special case where the sphere is not allowed to rotate until it is fully accreted.
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Clearly this stress field satisfies traction-free boundary conditions on the sphere’s surface, but not the stress-
free conditions required by the accretion solution. The principal stresses are everywhere compressive if
A<2(7+5v)(1—2v):/1éc>. (71)
3(4 —3v+ 5?)

However, in contrast to the accretion solution (60), this criterion is strongly dependent on Poisson’s
ratio. In particular, if the material is incompressible (v = 0.5) the hoop stress ogg at the equator will be
tensile for all values of A, implying the possibility of tensile failure due to rotation if the material has little
cohesive strength.

For v=0.5, the stresses in Chree’s solution resulting from gravitational loading alone are everywhere
hydrostatic and identical to the accretion solution of Brown and Goodman (1963) given in Eq. (53). For
all other values of v (compressible materials), the gravitational stresses are not hydrostatic (except at the
sphere’s center), implying that gravitational loading will contribute significantly to the Mises stress and
the maximum shear stress. In fact, for the bodies in the first three groups in Table 1, these stresses are dom-
inated by gravitational effects unless Poisson’s ratio is close to 0.5, and the rotational loading actually
reduces the maximum value, which therefore occurs at the poles where rotational stresses are a minimum.

This comparison shows that the stress field in a rotating body without residual stress is qualitatively dif-
ferent from that in a body that grows by accretion while rotating. In fact, the residual stress for the accreted
body could be found by subtracting Chree’s solution from the accreted solution of Eqgs. (54)—(58).

As a particular example, Fig. 1 shows a contour plot of the Mises stress for the asteroid Ceres. The
resulting stress fields are completely different. In Chree’s solution (a), the maximum stress occurs at the
poles and is 29.2 MPa and there is a minimum point on the polar axis where the Mises stress is zero. In
the accretion solution (b), the Mises stress is independent of polar angle § and reaches a maximum of
9.1 MPa at the center of the sphere.

4.3. Non-constant rotational speed

Eqgs. (48)—(52) can be used to determine the stresses in bodies for which the rotational speed does not
remain constant during accretion. We briefly consider the special case where the rotational speed increases
in proportion to the square of the sphere’s instantaneous radius s(¢),

Q=0Cs C=Q/d, (72)
500 500
400 400
= Stress [MPa
§ o >21 [ ]
% 300 300 21> 0 > 19
2 19> 0 > 16
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-é 200 200 12506535
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2>0 >0
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Fig. 1. Contour plot of the Mises stress for Ceres (p = 2050 kg/m>, v = 0.3, @ = 470 km, Q = 0.0002 rad/s), (a) using Chree’s solution
(no accretion) and (b) assuming accretion at constant speed.
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Fig. 2. Comparison of the failure limits, A, as a function of material compressibility as indicated by Poisson’s ratio, v. Aff): no
accretion or residual stress, Ap: accretion with constant rotation rate, A;Q): accretion with quadratically increasing rotation rate.
Incompressible finite kinematic fluid limits: A™ MaClaurin spheroid, A" Jacobi ellipsoid.

such that when s = a, Q equals the final rotational speed Qr. Dones and Tremaine (1993) suggest that this is
an appropriate assumption for a highly dispersed cloud of particles under the gravitational influence of a
large central body. The resulting stress field is found by substituting (72) into (48)—(52) and performing the
necessary integrations.
It can be shown that the stress field is everywhere compressive if
Q9 _200+5M(01—v) _ e
npG 83 — 6v — 4512 P
Thus, when the rotational speed is not constant during accretion, we recover a dependence on material
compressibility. Comparison of the maximum Mises stress and the maximum shear stress show that both
are 9.5-11.5% lower than in the constant speed case with Q = Q.

(73)

4.4. Comparison of failure mechanisms

The failure limits predicted above can be compared as a function of material properties and with histori-
cal limits. Fig. 2 shows the limits identified in Egs. (60), (71) and (73). Points above a particular curve
denote rotation rates that would cause tensile stresses in a solid sphere according to the corresponding
accretion scenario. Also shown in Fig. 2 are the classical incompressible fluid limits of Maclaurin spheroids
and Jacobi ellipsoids (Chandrasekhar, 1969). This analysis indicates that solid spheres usually have greater
rotational capability than incompressible fluids and that accreted and unaccreted spheres can have compa-
rable or very different rotation limits depending upon the accretion scenario and the material
constituencies.

5. Conclusions

A closed form solution has been found for the stress field in a self-gravitating elastic sphere that grows by
an accretion process during which the rotational speed can be a general function of time. For accretion at
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constant rotational speed, the resulting principal stresses are everywhere compressive as long as the rota-
tional speed satisfies a simple inequality (60).

The resulting stress field exhibits significant qualitative differences from the classical solution due to
Chree (1895) for an initially unloaded and stress-free sphere loaded by gravitational and rotational inertia
forces. In particular, the maximum shear stress and Mises stress for the accreting body depend only upon
the rotational loading, whereas these stresses are dominated by gravitational effects in Chree’s solution,
except in the limiting case of incompressible materials.

Even though there are qualitative differences in the internal fields of accreted and unaccreted spheres,
their rotation limits can still be comparable and depend critically upon the accretion scenario and material
constitutive properties.
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